Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PAS kinase promotes cell survival and growth through activation of Rho1.

Identifieur interne : 001146 ( Main/Exploration ); précédent : 001145; suivant : 001147

PAS kinase promotes cell survival and growth through activation of Rho1.

Auteurs : Caleb M. Cardon [États-Unis] ; Thomas Beck ; Michael N. Hall ; Jared Rutter

Source :

RBID : pubmed:22296835

Descripteurs français

English descriptors

Abstract

In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions.

DOI: 10.1126/scisignal.2002435
PubMed: 22296835
PubMed Central: PMC3930472


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">PAS kinase promotes cell survival and growth through activation of Rho1.</title>
<author>
<name sortKey="Cardon, Caleb M" sort="Cardon, Caleb M" uniqKey="Cardon C" first="Caleb M" last="Cardon">Caleb M. Cardon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beck, Thomas" sort="Beck, Thomas" uniqKey="Beck T" first="Thomas" last="Beck">Thomas Beck</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
<author>
<name sortKey="Rutter, Jared" sort="Rutter, Jared" uniqKey="Rutter J" first="Jared" last="Rutter">Jared Rutter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22296835</idno>
<idno type="pmid">22296835</idno>
<idno type="doi">10.1126/scisignal.2002435</idno>
<idno type="pmc">PMC3930472</idno>
<idno type="wicri:Area/Main/Corpus">001195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001195</idno>
<idno type="wicri:Area/Main/Curation">001195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001195</idno>
<idno type="wicri:Area/Main/Exploration">001195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">PAS kinase promotes cell survival and growth through activation of Rho1.</title>
<author>
<name sortKey="Cardon, Caleb M" sort="Cardon, Caleb M" uniqKey="Cardon C" first="Caleb M" last="Cardon">Caleb M. Cardon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112</wicri:regionArea>
<placeName>
<region type="state">Utah</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beck, Thomas" sort="Beck, Thomas" uniqKey="Beck T" first="Thomas" last="Beck">Thomas Beck</name>
</author>
<author>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
</author>
<author>
<name sortKey="Rutter, Jared" sort="Rutter, Jared" uniqKey="Rutter J" first="Jared" last="Rutter">Jared Rutter</name>
</author>
</analytic>
<series>
<title level="j">Science signaling</title>
<idno type="eISSN">1937-9145</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Enzyme Activation (genetics)</term>
<term>Glucose (genetics)</term>
<term>Glucose (metabolism)</term>
<term>Guanine Nucleotide Exchange Factors (genetics)</term>
<term>Guanine Nucleotide Exchange Factors (metabolism)</term>
<term>Intracellular Signaling Peptides and Proteins (genetics)</term>
<term>Intracellular Signaling Peptides and Proteins (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (genetics)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>rho GTP-Binding Proteins (genetics)</term>
<term>rho GTP-Binding Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (génétique)</term>
<term>Facteurs d'échange de nucléotides guanyliques (génétique)</term>
<term>Facteurs d'échange de nucléotides guanyliques (métabolisme)</term>
<term>Glucose (génétique)</term>
<term>Glucose (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (génétique)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines G rho (génétique)</term>
<term>Protéines G rho (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Protéines et peptides de signalisation intracellulaire (génétique)</term>
<term>Protéines et peptides de signalisation intracellulaire (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Glucose</term>
<term>Guanine Nucleotide Exchange Factors</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>rho GTP-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Glucose</term>
<term>Guanine Nucleotide Exchange Factors</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>rho GTP-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Enzyme Activation</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Facteurs d'échange de nucléotides guanyliques</term>
<term>Glucose</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines G rho</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs d'échange de nucléotides guanyliques</term>
<term>Glucose</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines G rho</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22296835</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1937-9145</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>209</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>Science signaling</Title>
<ISOAbbreviation>Sci Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>PAS kinase promotes cell survival and growth through activation of Rho1.</ArticleTitle>
<Pagination>
<MedlinePgn>ra9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1126/scisignal.2002435</ELocationID>
<Abstract>
<AbstractText>In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cardon</LastName>
<ForeName>Caleb M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beck</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>Michael N</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rutter</LastName>
<ForeName>Jared</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DK071962</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007464</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-GM07464</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01DK071962</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Sci Signal</MedlineTA>
<NlmUniqueID>101465400</NlmUniqueID>
<ISSNLinking>1945-0877</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020662">Guanine Nucleotide Exchange Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490929">ROM2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C485219">Ssd1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C467888">PSK1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C467889">PSK2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="C051302">RHO1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020741">rho GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020662" MajorTopicYN="N">Guanine Nucleotide Exchange Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020741" MajorTopicYN="N">rho GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22296835</ArticleId>
<ArticleId IdType="pii">5/209/ra9</ArticleId>
<ArticleId IdType="doi">10.1126/scisignal.2002435</ArticleId>
<ArticleId IdType="pmc">PMC3930472</ArticleId>
<ArticleId IdType="mid">NIHMS551025</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2009 Dec 29;19(24):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19962308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 9;275(23):17233-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 21-28;408(6815):994-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11140689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 12;276(41):37794-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jan;160(1):83-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Mar;22(5):1329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Oct 4;111(1):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Apr;166(4):1661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15126388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jun;125(5):1077-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8195291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 May 27;143(1):135-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8200529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Oct 15;233(2):520-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7588797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Apr 12;272(5259):279-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8602515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Apr 19;271(16):9193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8621575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 May 1;15(9):2196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8641285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Oct 17;176(1-2):35-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Nov 15;15(22):6060-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8947028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Feb 21;88(4):531-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9038344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 27;272(26):16103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9195905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Apr 10;273(15):8616-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9535835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Apr 15;17(8):2235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 5;8(22):1211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Nov;144 ( Pt 11):2941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9846729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Apr;15(6):481-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Sep 1;27(17):3455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 May 25;26(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17531808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):774-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17712357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15466-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 28;26(23):4824-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Apr;19(4):1763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 May 9;30(3):263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18471972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 24;285(52):41034-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21157483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Feb 21;192(4):583-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21339329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jan;29(1):187-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Sep;20(17):3851-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19570907</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Utah</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Beck, Thomas" sort="Beck, Thomas" uniqKey="Beck T" first="Thomas" last="Beck">Thomas Beck</name>
<name sortKey="Hall, Michael N" sort="Hall, Michael N" uniqKey="Hall M" first="Michael N" last="Hall">Michael N. Hall</name>
<name sortKey="Rutter, Jared" sort="Rutter, Jared" uniqKey="Rutter J" first="Jared" last="Rutter">Jared Rutter</name>
</noCountry>
<country name="États-Unis">
<region name="Utah">
<name sortKey="Cardon, Caleb M" sort="Cardon, Caleb M" uniqKey="Cardon C" first="Caleb M" last="Cardon">Caleb M. Cardon</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001146 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001146 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22296835
   |texte=   PAS kinase promotes cell survival and growth through activation of Rho1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22296835" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020